Miscellaneous¶
Confidence Interval¶
-
mlpy.
percentile_ci_median
(x, nboot=1000, alpha=0.025, rseed=0)¶ Percentile confidence interval for the median of a sample x and unknown distribution.
Input
- x - [1D numpy array] sample
- nboot - [integer] (>1) number of resamples
- alpha - [float] confidence level is 100*(1-2*alpha) (0.0<alpha<1.0)
- rseed - [integer] random seed
Output
- ci - (cimin, cimax) confidence interval
Example:
>>> from numpy import * >>> from mlpy import * >>> x = array([1,2,4,3,2,2,1,1,2,3,4,3,2]) >>> percentile_ci_median(x, nboot = 100) (1.8461538461538463, 2.8461538461538463)
Peaks Detection¶
-
mlpy.
span_pd
(x, span)¶ span peaks detection.
Input
- x - [1D numpy array float] data
- span - [odd int] span
Output
- idx - [1D numpy array integer] peaks indexes
New in version 2.0.7.
Functions from GSL¶
-
mlpy.
gamma
(x)¶ Gamma Function.
Input
- x - [float] data
Output
- gx - [float] gamma(x)
-
mlpy.
fact
(x)¶ Factorial x!. The factorial is related to the gamma function by x! = gamma(x+1)
Input
- x - [int] data
Output
- fx - [float] factorial x!
-
mlpy.
quantile
(x, f)¶ Quantile value of sorted data. The elements of the array must be in ascending numerical order. The quantile is determined by the f, a fraction between 0 and 1. The quantile is found by interpolation, using the formula: quantile = (1 - delta) x_i + delta x_{i+1} where i is floor((n - 1)f) and delta is (n-1)f - i.
Input
- x - [1D numpy array float] sorted data
- f - [float] fraction between 0 and 1
Output
- q - [float] quantile
-
mlpy.
cdf_gaussian_P
(x, sigma)¶ Cumulative Distribution Functions (CDF) P(x) for the Gaussian distribution.
Input
- x - [float] data
- sigma - [float] standard deviation
Output
- p - [float]
New in version 2.0.2.
Other¶
-
mlpy.
away
(a, b, d)¶ Given numpy 1D array a and numpy 1D array b compute c = { bi : | bi - aj | > d for each i, j}
Input
- a - [1D numpy array float]
- b - [1D numpy array float]
- d - [double]
Output
- c - [1D numpy array float]
New in version 2.0.3.
-
mlpy.
is_power
(n, b)¶ Return True if ‘n’ is power of ‘b’, False otherwise.
New in version 2.0.6.
-
mlpy.
next_power
(n, b)¶ Returns the smallest integer, greater than or equal to ‘n’ which can be obtained as power of ‘b’.
New in version 2.0.6.